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Abstract. Object tracking is one of important research field in com-
puter vision area. Especially for the thermal infrared object tracking,
it can be applied for surveillance systems, military field, and etc. Un-
fortunately, there are several challenging problems in this research such
as camera motion, dynamics change, motion change, occlusion, and also
size change. In order to solve these problems, we proposed kernelized
correlation filter using convolutional shallow features. Further, to han-
dle the appearance change, the update parameters are also proposed.
Furthermore, to validate the proposed method, extensive experiments
are conducted by using VOT-TIR2016 benchmark dataset. The results
from the experiment show that the proposed method performs favorably
against state-of-the-art tracking algorithms.
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1 Introduction

Object tracking still become hot research topic in this year. It is because there are
many applications related with this topic such as surveillance systems, robotics,
virtual reality, augmented reality, and etc, where these applications will grow
rapidly for the future. The purpose of object tracking is how to estimate the
state of the target object when the initial information of the target object (e.g.
centroid of the location of the target object, scale of the target object, and etc)
is provided. Further, compared to the common cameras, thermal cameras have
some advantages such as robust for changes in illumination, well perform in the
darkness, and also robust to the shadow effects.
However, to make robust and accurate object tracking algorithm, one of sev-

eral important factors that should be considered is how to represent the target
object by using a feature. The color histogram features can be categorized as
a simple features. It is because it can be obtained from the pixel values of the
images directly, or it can be obtained by using a simple equation which repre-
sents color histogram. One of example of the utilizing color histogram features



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

520

for object tracking is provided in [1]. The authors proposed multi-scale color fea-
tures based on correlation filter to developed object tracking algorithm. Based
on their results, this representation shows good for changes in motion and illumi-
nation problems. For an occlusions and change in size, this representation shown
less robust than the others tracking algorithm. Points representation are used
to represent the target object for object tracking in [2, 3]. Unfortunately, this
representation does not robust when the tracker algorithm faced some problems
such as change in illumination and motion, as well as change in size problems.

In [4], the authors used sparse coefficient vectors to represent the target ob-
ject. This representation combined with particle filter to modelling the motion.
Because particle filter is used to modelling the motion, the accuracy of their
proposed method will be influenced with the number of particle that they used.
Then, it also influences to the computation time. To address the computation
time problem, [5] proposed fast generative approach based on sparse coefficient
vector for visual tracking. Although well perform in occlusion problem, this
representation has some drawbacks for changes in motion and size. Remember-
ing the drawback from the color histogram representation, recently, to address
this problem [6] proposed combination features between color histogram and
histogram of oriented gradients (HOG) in the correlation filter framework. Fur-
ther, [7] proposed distractor handling since this combination features failed when
faced the distractor which has similar representation with the target object.

Beside that, currently, Convolutional Neural Networks (CNNs) shows excel-
lent performance in several computer vision applications such as object recogni-
tion [8] and object detection [9]. Inspiring from this fact, in this paper, we pro-
posed convolutional features to represent the target object, where these features
are generated from the shallow layer of pre-trained CNN. Further, correlation
filter is proposed to estimate the state of the target object. Finally, since this
research is focused on thermal infrared object tracking, we perform extensive
experiment on a visual object tracking-thermal infrared 2016 (VOT-TIR2016)
benchmark dataset. Where this benchmark dataset consists of 25 videos. Based
on the results, the proposed method performs favorably against state-of-the-art
tracking algorithms.

The organization of this paper as follow: Section 2 gives explanations about
the proposed method includes the kernelized correlation filter, convolutional
shallow features and update parameters of the proposed method. Section 3 pro-
vides experiments results. Section 4 concludes this paper.

2 Proposed method

In this section, our proposed method which consists of kernelized correlation
filter, convolution shallow features, and update parameters are described. Figure
1 shows the framework of the proposed method.
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Fig. 1. Framework of the proposed method.

2.1 Kernelized correlation filter

In the first frame, correlation filter is trained by using image patch which is
cropped from a given position of the target object. For detection in next frame,
many types of features can be extracted from raw input data. In this paper,
we used convolutional features which is generated from shallow layer. Then, a
response map can be obtained by using an inverse fast Fourier transform (FFT)
after performing element-wise multiplication by using FFT between smoothed
features and the correlation filter. Further, location of the target object can be
estimated using maximum value of the response map. Mathematically, it can be
represented by

y = F−1(x̂ ĥ∗), (1)

where x̂ is the input in the Fourier domain, and ĥ∗ is the correlation filter in the
Fourier domain. Symbol ∗ denotes complex conjugate and  represents element-
wise multiplication.

2.2 Convolutional shallow features

Currently, research about CNN has been growth rapidly. The features which
generate from CNN have many advantages especially in computer vision applica-
tions. This network usually consists of several layers such as convolutional layers,
normalization layers, and pooling layers. In this paper, we used pre-trained CNN
proposed by [10] and the features to represent the target object is generated from
shallow layer.

2.3 Update parameters

During tracking, usually the target object change their appearance. In order to
handle this problem, the algorithm should update the parameter. Because we
used kernelized correlation filter, the correlation filter can be updated by using
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Fig. 2. AR rank plots based on experiments in VOTIR-2016 benchmark dataset: (a)
for label camera motion, (b) for label dynamics change.
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where i is the number of training image patch, y is the desired output, and A
is element-wise multiplication between weight function and correlation filters.
Symbols γ and λ denote weight control and regularization parameter to handle
over fitting. Further, parameter γ can be updated by using

γupdated =
γprevious
1− α

, (3)

where α is the learning rate.

3 Experimental results

In this section, the experimental results are described. Parameters λ and α are
equal to 1 and 0.0075, respectively. And to evaluate the proposed method, VOT-
TIR2016 benchmark dataset [11] is used. This benchmark dataset consists of
25 videos, where each video has challenging problems such as camera motion,
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Fig. 3. AR rank plots based on experiments in VOTIR-2016 benchmark dataset: (a)
for label empty, (b) for label motion change.

dynamics change, motion change, occlusion, and also size change. Further, the
experimental results will be served in the accuracy-robustness (AR) rank. The

accuracy is measured based on area under curve (AUC), where AUC =
|Br∩Bgt|
|Br∪Bgt| .

Br is the bounding box of the result and Bgt is the bounding box of the ground
truth. For robustness, it is measured based on the average failure rate over 3 runs.
Our proposed method is implemented in MATLAB and runs approximately 0.4
fps on a 3.3 GHz i5-4590 with 4 GB memory.

The AR rank plots are shown in Figure 2, Figure 3, and Figure 4. The pro-
posed method is compared with 12 state-of-the-art tracking algorithm such as
BDF [12], BST [11], DPCF [13], DPT [14], EBT [15], FCT [11], LOFT lite [16],
LT FLO [17], MAD [18], MVCFT [11], PKLTF [19], and SKCF [20]. For the cam-
era motion problem, DPT tracker was ranked first, while the proposed method
and DPCF tracker have same rank in the second rank. For the dynamics change
problem, DPCF tracker was ranked first in the AR rank plot, while the proposed
method was ranked fifth. The proposed method and DPCF tracker were ranked
first for label empty problem. Further, the proposed method performs excellent
and achieved ranked first for the motion change problem. For the occlusion prob-
lem, the proposed method shows more robust than DPT tracker, SKCF tracker,



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

524

AR rank plot for label occlusion AR rank plot for label size change
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Fig. 4. AR rank plots based on experiments in VOTIR-2016 benchmark dataset: (a)
for label occlusion, (b) for label size change.

and MVCFT tracker. Furthermore, the proposed method and MVCFT tracker
were ranked second for the robustness rank in the size change problem.

4 Conclusion

In this paper, convolutional shallow features with kernelized correlation filter
for thermal infrared object tracking is proposed. The convolutional features is
generated from shallow layer of pre-trained CNN. Then, to estimate the location
of the target object, maximum value from response maps of the correlation filter
is used. Further, update parameters are used to handle appearance change of
the target object during tracking. And based on extensive experimental results
by using VOT-TIR2016 benchmark dataset, our proposed method performs fa-
vorably against state-of-the-art tracker algorithms.
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